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Probabilistic Approach to Computational Algorithms for Finding Stationary

Distributions of Markov Chains.

Michael .I. Taksar and Winfried K. Grassmann

Abstract

A number of important theorems arising in connection with Gaussian elimination
are derived, using semi-regenerative analysis. The implications of these
theorems to find steady-state solutions of Markov chaing are analysed. The

results obtained in this way are then applied to quasi birth-death processes.
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B

Originally, the determination of setationary distributions in Markov chains
was done, using completely algebraic arguments. Unfortunately, algebraic
arguments often do not take advantage of the particular structure of stochastic
matrices which form the coefficients of the equilibrium equations. Recently, a
new trend emerged which looks into the probabilistic interpretation of the
algorithme for solving equilibrium equations. The objective of this paper is to
further thia trend by deriving computational algorithms from purely
probabilistic argumentas. The arguments employed in this paper are based on
the semi-regenerative structure of Markov chains. This approach gives better
insights into formal manipulations of equilibrium equations and provides \f\_“.
probabilistic interpretations of the coefficients obtained at each step of such ‘; '
manipulations. Thia allows one in turn to make connections and draw -
conclusions that would not be obvious otherwise. In particular, we derives a
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number of theorems leading to a better understanding of Gaussian eliminatian - -—-——{
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a semi-regenerative processes. These theoremsa allow one to derive relationships

between certain matrix-geometric solutions and Gaussian elimination Neuts

(1981), Gaver ot al. [1984].

£ €9 « TV ¥

From a Markov chain {Y,, n=0,1,...} one can obtain a semi-~regenerative

process by recording the state of the chain only while it vigita points of a

RSN

given subeet D of the state space of Yp. Specifically, let Tp, n = 1,2,..., be the
time of the nth vigit to D and let Xn be the positicn of the chain at Tp. The
process {(Xp,Tph), n=1,2,..} is then a Markov renewal process (see Cinlar [1975]

Chapter 10), {Xp, n=1,2,...} ia a semi-regenerative process and the T, are the

R N

semi-regenerative epochs of the Markov renewal process. Thus, if we consider

Ap = { YTn-l’YTn-l"'l’“”Y Tn-l}
then the conditional distribution of the sequence (Ap,Apn4i,.-.), given the past
of the process up to Tp-1, depends only on Xp.1, and all A, are conditionally
independent, given (X,T ). The analysis of the behaviour of Y, from one
semi-regenerative epoch to another produces the main relation between “"
steady-state probabilities that is used for developing the algorithm. For
gimplicity, we asaume that the Markov chain {Yp,, n=0,1,..} is irreducible and Ky
aperiodic, and that the state space of Y, is E=(0,1,2,..} . Such a Markov chain
reaches steady state (see Ginlar [1975], Chapter 8), a fact that isa expressed by

the following relation

> ',’ " ..' o .

Yn-’Yo

Alternatively, one can write

DA AL

PilYn = j) * pj, § = 0,1,0e

[4

Where p;j is the distribution of Y, and Pj{.} ® P{ . 1Yo = i}. The notation E;j

()

must be understood in a similar way.
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D = {0,1,2,.“,(‘—1 }

and

T

min{ m>0: Y ¢ D). (1)
Let 1i(Y) be the indicator function for Yp=i, and let
T
Vﬁ(d) = Ei{ £ 1j(Yp) ) = Eff{m: m < T and Yp = j }. (2)
m=0
The symbol # denotes the cardinality of a set. The expresion, #{m: m > T and
Ym = Jj }, in particular, is the number of times m meets the condition in -
question, and the quantity Vij(d) becomes the expected number of visits to
state j prior to the exit from E-D, given one starts from the point i. The vij‘d)
are related to the p;j according to the following theorem:
Theorem 1: Let (pg,p},...) be the steady-state distribution of the Markov chain
Yn. Then
d-1
pj = I vij{d) pt. (3)
izl
Proof: Let
T1 =T
Tn+l = min{ m>Tp: Yp 2 D}

Xp = Y, . (4) o

From these definitions, it follows that T, is a stopping time, and that X, can
only assume the wvalues 0,l,...,d-1. As a consequence, the strong Markov
property applies, which means that X, is a Markov chain with the state space

D = {0,1,...,d-1). Thia chain is irreducible because the original chain Y, is :
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:: irreducible. Let v§, i = 0,1,...,d-1 be the unique invariant distribution for Yp,.
:‘: Let m(i) = E{{T) be the times between regeneration, and let
\
‘ Kn(hi) = Pi{Xp = j, Ton)
(LN
o According to Ginlar [1975}, Chapter 10, Theorem (6.12)
s .
" im Pi{ Yp=j) = L vk L Knlk,) /2 m(k)v] (5)
nie keD n=0 kD

We must mention Cinlar assumes that the times between the Markov-renewals
. . have a continuous, aperiodic distribution. Since we are dealing with a
Ty

discrete~time Markov renewal process, the distributions in question have in
w,
A fact a periodicity of 1. However, the proof for the discrete case is basically
d.l
::' identical to its continous counterpart. The sum of the EKp(k,j) in (5) can be
,,IF.
- found as
>
& I Kplij) =L P Yp=j T>m)
- m=0 m=0
O = ¥ Bi( 15(Ym) lro>m ) = Vij(d)' (6)
e m=0
Since Pi{ Yo = j } converges to pj, one finds from (5) and (6)
N
& pj= I vt,<d) “i /% m(k)Vk- (7)
i=0
:; If i,j = D, vij‘d) is 1 if i=j, and zero otherwise. In thias case, (6) becomes
) d
N i =vi/ L akvg, (8)
» k=0
S a relation that is also well known from semi-Markov processes. From (7) and

(8), one easily obtains (3), which proves the theorem. (3) can also be proven in

different waye (Miller [1984], Grassmann et al. [1985]), but then, the connec-
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) tion to semi-regenerative theory is lost.

Later on, we need to relate the vij(k) for different values of i,j,k. Such

relationships can be obtained from the following theorem.
Theorem 2: Let vij(k) be given by (2), and let pjj be the transition
probabilities of the Markov chain Yp. Then for k > d
k-1
vij{d) = vi;(R) 4 5 v (d) v, (k) (9)
v=d
Proof: Let D consist of the first d points form O to d-1, and let T be defined
by (1). Similarly, let K consist of the firast k points from 0 to k-1, and let
7 = min(m>0: Ygp2K) (10)
Since the first vigit to K occurs prior to the first vigit to D, 7<T, and one has
vij(d) = Ei(#{m>0: Yp=j, m<T} )

Ei(8{m: Yp=j, 0<m<7} ) + Ei{(#{m: Yp=j, T<¢m<T} )

vij{(K) + Ej(#(m: Yp=j, T<m<T} ). (11).

We now consider the successive visits to K-D. Thus, let ¢(n) the nth visit to

K‘-D, that iB,
¢(1) = min{m: m>0, Y = K-D}
¢(n) = min{m: m>¢(n-1), Yo & K-D}.

The £(n) are obviously stopping times, and é(n) » « ag n + e, Moreover,

v = min{ m>0: YpeK } € min{ m>0: YpzK-D } = §(1). (11)

In (10), the equality holds if the first visit to K is also a visit to K-D. In a

Ol J

similar way, one finda from (1) and (11), provided K>D

a e a% e e

r<T. (12)

(12) holds as an equalitiy if the first visit to D coincides with the first wviait to

K. In this case, the second term of (11) is zero. If, on the other hand, v<T,
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the first visgit to K precedes the first vigit to D, that is, the first visit to K is h
a visit to K-D. Hence,
T:e(l)(T,

and one finds under this condition

Eil #(m: Yp=j, <m<T} ]

Eil £ 1j(Yg) lm¢T ]
m=¢(1)

o g{ve+l)-1
Eil £ £ 1j(Ym) lmet ]
v=l n=¢(v)

o g(vel)-1 k-1
E{I I 15(Yp) 1m<T 2 In(Ye(1)) ]
v=1 m=¢(v)

k-1 o ¢t(v+l)-1
By{E [ £ I lJ(YI) ln<T ln(Yf(l)) 11 (13)
n=d v=1 w=¢(v)

We now condition on Y¢(y) = u. Because of the strong Markov property for the

stopping time on ¢(v), one has

t(v+1)-1
Ei [ L 15(Ym) lme¢T In(Yg(v)) ! Yev) = ul
m=¢(v)

¢(1)-1
Eil gj(Ym) 1m<T ln(Yo) ! Yo = u ]}
m=

r-1

En(l lj(Ym) lp=u ] = 1p=y an(k) (14)
m=0

We now use (14) to write (13) as

o e e e e - e e e e e e .. . o e e e -
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j~1 =&  §{vel)-1
BilI I I Im(Yg(v)) leqv)<T an(k) ]
n=d v=1 mz¢(v)

k-1 o
Eil n2=d2m1:B<T 1n(Yg) vp;k)] =

k-1 T-1 -
LB [T vpilk) 15(Yg) )
n=d m=0

T vai®) vin(d), :
n=d
In summary L

Bil #(m: Yp=j, T<m<T} ] = n;:;i vin(d)vnj(k) (15) 3

If we compare (15) with (11), we obtain (3).

ek B B

Corollary: For i<d

1
vij{9) = vij(d+1) 4 vig(d) vq;(d+l), (16) ;
)
A similar result waa obtained in Grassmann et al {1983].
Applications
The theorems above are particularly useful if the states can be partitioned
into groups of states Kgo,K],K2,..., called levels. Level 0 consists of state 0 only,
and level n, n=0,1,2,... consists of the states kp.] to kp-1. For consistency, kg
is defined as 0. If d in equation (3) is replaced by k4, one has
]
]
1
]
Ty e O G s G T S A A T !
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kg-l (kg) d-1 (kq) 1
Pj = 1 Pi vij =IIpiv jsK g4 7)
! i=0 n=0 isKp v

We now define the following vectors and matrices:
qQn = ( Pjs jsKn 1

and

(kd) | )
Und = [ vij vieKp, jeKq 1 (18)
Using these symbols, (17) becomes
d-1
ad = I an Und (19)
n=0

In many applications, one has the following: For all d within a certain range,
say doc, level d cannot be reached from level n, n<d-l1. In other words, level

d-1 cannot be skipped. Such levels will be called non-gkippable. If d is

non-ekippable, Ugq-2, U4-3,... are all zero, because all 'vij(kd) vanish. In this
case, (19) becames

ad = 44d-1 Yd-1,d (2)
Suppose now that for n within the range extending from a certain lower limit e
up to e, all levelas have the following properties:
1) Level d is non-ekippable
2) kdg+1 = kg + a, where a is a constant
3) [pi j+i» isKd] = [pi jeir ieKgl, j20, g2d.
It is easv to verify that under these conditions, U4-j,d = Uz-1,4 = U, g2d.
From (20). one concludee that under these conditions, q4 is matrix-geometric
(Wallace [1969], Neuta [1981], Gaver et al. [1984]), that is

Qd+r = ad UF. (21)

N AN AN Y B T i N N A SN AN A AR AR RE R N AN PO SNy




> Thus, using the vij(d) allows one to derive a number of results. Moreover,

the vU(d) can be found in many cases of practical importance. Gragsmann et al

g vy y

[1985) showed how to find the vjj{J), using a modification of Gaussian
elimination. Once the vij(j) are determined, one can obtain the Vij(‘”' d<j,
either using (9) or (16). Moreover, the vij(d) can be grouped into matrices
- according to equation (18), which allows one to set up interesting relations for

quasi birth-death processes, in particular equations (20) and (21).
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